Math 251, Advanced Calculus I, Second Midterm Questions and Solutions, Dec 14, 2018

Question 1 (20 points) Find the radius and interval of convergence of the series

 (—D)"(z — 1"
Z ( )37(L+3 )

n=0

Compute its sum for —2 < z < 4. Is this series uniformly convergent on (0,3) ?

Solution. Applying Ratio Test, we easily get @ < 1 and since it is divergent at the end points we
obtain
—2<x<4

as the interval of convergence. Radius of convergence is R = 3.
Series uniformly converges on (0,3) because any power series is uniformly convergent in its radius of
convergence.

On the other hand, it is a geometric series with a = 3% and r = —%71.

Therefore
Sum = “@ _ 1
S 1l-7 9(z+2)

Question 2 (20 points) Let f,(z) = nze " neN
a) Show that f,(x) converges pointwise on [0, 1] as n — oo.
b) Show that f,(z) does not converge uniformly on [0,1] as n — oco.

¢) Calculate

1
[ G ) ds
0

n-soo
and )

Jim ([ fula) da)
separately.
Solution. a) HILH;O fn(x) =...=0 for every z and n € N.

b) fi(z) = n[e_mz.l + :r:.e_mz(—Qna:)] = 0 implies = = \/% € [0,1] which easily can be seen that the

maximum point. Therefore

T (z) = Supzeplfalz) — f(z)| = % e

So it is not uniformly convergent.
1 n
T z du -1 -1 1
— dx = —— = —(e7 ") = —(— — 1) by letti = nx?.
C)/O ena? v /0 et 2nx 271(e 0) 2n(e" ) by letting u = na
Therefore )
1
lim(/ n—xzdx):f
n—oo " [q enx 2
On the other hand .
/ (lim f,(z)) dx=0
0

n—oo
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Question 3 (30 points)
a) Using the geometric series, find the series expansion of 1522
x
b) Find the Taylor expansion of f(z) = arctan(x) around z = 0 using

1
arctan(x) = /ﬁ dx
x

Why is it valid to exchange summation and integration?

¢) Using the result in part (b), show that

LA S
4 3 5 7
Solution.
ﬁfl+x+x Zx V€ (0,1)
Replace —x by 22 we get o
ﬁle = T;)(—l)”x%, Vo € (0,1)

Since convergence is uniform then it is valid to exchange summation and integration. Therefore

1 e (—1)”!172”
arctanx:/1+x2 ZnZ::O 1l vz € (0,1)

If we look at the last power series corresponds to arctan z it is also convergent for x = 1. Namely,

o (=)
Z 2n+1

n=0

is convergent by the alternating series test.

Therefore we obtain
oo n

T (—1) 1 1 1
1:—:2 =l—-—=—4+-=-—=+4+...
arctan 1 o+ 1 3_|_5 7_|_

Question 4 (30 points) Determine whether or not the following series converge uniformly for = € R.

DLy ) i

Solution. a) If 2 # 0 then since it is a geometric series , we get

oo oo 1
QZ .2 _ 2
Zi_x "=t =142z
2 2 1
n0(+x n01+x e

Therefore

i z? B 1422, if 240
—(1+a2)n 0, ifz=0

Limit function is not continuous. So the series does not converge uniformly.
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b) You may use several techniques for this question. Let me give an easy one:

Since 2ab < a? + b2 then
1+ nx? > 2y/n.|z|, Vo € R,

So,
| x < |z] 1
n(1 + nx?)

= V. R\ {0}.
~2nn x| 2p3’ v €R\{0}

Since ¢,,(0) = 0 this inequality holds Va € R.

Therefore
T 1

T < =
‘n(1+nﬂc2)| ~ on3

By the Weierstrass M-Test, original series is uniformly convergent.



