MCS 251-MT1 (Summer)

- **Q1**. Let the sets $A = \{(x,y) \in \mathbb{R}^2 : y > x^2 1\} \cup \{(x,y) \in \mathbb{R}^2 : y < 1 x^2\}$ and $B = \{(x,y) \in \mathbb{R}^2 : x \in \mathbb{Z}, y \in \mathbb{Q}\}$ be given. Find; a) $Int(A), cl(A), \partial A$ b) $Int(B), cl(B), \partial B$. Describe your answer.
- Q2. Construct sets to show that each of the following is False:
- a) $A \subseteq B \Rightarrow \partial A \subseteq \partial B$
- b) $\partial S = \partial (IntS)$
- c) $IntA \cup IntB = Int(A \cup B)$
- **Q3**. Show that $f(x) = \sqrt{x}$ is uniformly continuous on $[0, \infty)$.
- **Q4.** Let $f_n:[0,\infty)\to\mathbb{R}, f_n(x)=nxe^{-n^2x}$.
- a) Is $f_n \to 0$ pointwise on $[0, \infty)$?
- b) Is $f_n \to 0$ uniformly on $[0, \infty)$?

Describe your answer.

- **Q5**. Show that $\sum_{n=0}^{\infty} e^{-nx} \cos(nx)$ converges uniformly on $[1, \infty)$.
- **Q6** (Bonus). Prove that there is no continuous map from [0,1] onto (0,1).